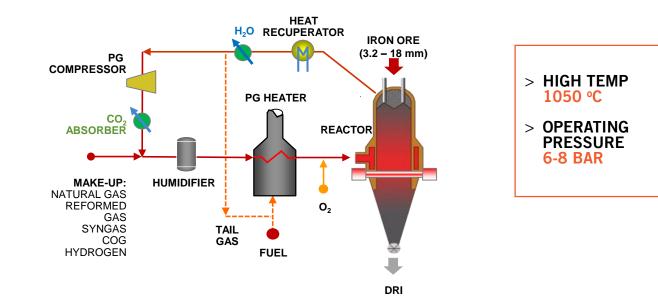


High-Carbon DRI: the feeding material to improve performances and decrease CO2 emissions in both BF and EAF

Alessandro Martinis- EVP Danieli Centro Metallics 12-14 Sept, Linz, Austria



- > Is the innovative HYL Direct Reduction Technology developed jointly by Tenova and Danieli
- > The most competitive and environmentally clean solution for lowering the liquid steel production cost

FLEXIBILITY

> Same scheme for ANY energy source

ENVIRONMENTAL:

- > lowest NOx emissions: 0.030 kg_{NOX} / t_{DRI}
 > Selective removal of iron ore reduction's by-products: $H_20 \& CO_2$

ENERGIRON PLANT EMISSIONS ARE IN ACCORDANCE WITH THE MOST STRINGENT ENVIRONMENTAL REGULATIONS WORLDWIDE

- > No need to preheat the combustion air to high temperature, due to the high energy efficiency of the process itself results in eliminating high NOx generation;
- > NOx emissions additionally reduced with ultra-low NOx burners and/or SCR;
- > Low dust emission from heater thanks to low tail gas purged from reducing circuit to burners

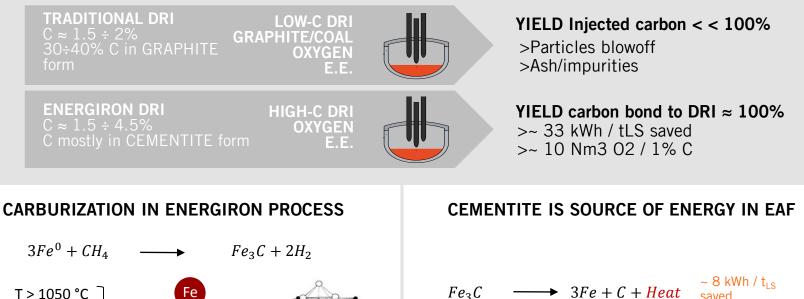
NOx with Ultra Low NOx burners	30-80	[mg/Nm ³]
NOx with Selective Catalytic Removal	10-50	[mg/Nm ³]
SO_2 (w/o and with sulphur removal)	250- negligible	[mg/Nm ³]
СО	20-100	[mg/Nm ³]
Dust from heater stack	1-5	[mg/Nm ³]
Dust from material handling dedusting	5-20	[mg/Nm ³]

DRI IS USED IN EAFS TO COMPLETELY OR PARTIALLY REPLACE SCRAP:

- 1. Higher Volumetric Weight
- 2. Uniformity of Chemical Analysis
- 3. Freedom from Undesirable Elements
- 4. Continuous Charging
- 5. Less Flicker
- 6. Less noise level
- 7. Better Bath Steering
- 8. Lower Nitrogen Content
- 9. Foamy Slag Practice

DRI WITH HIGH CONTENT OF IRON CARBIDE PROVIDES FURTHER ADVANTAGES...

 $P \approx 6 \div 8$ barg


CH₄ > 20%

 $H_2/CO \approx 5$

Fe

CARBON IN EAF IS REQUIRED TO REDUCE RESIDUAL FEO IN THE DRI

Fe

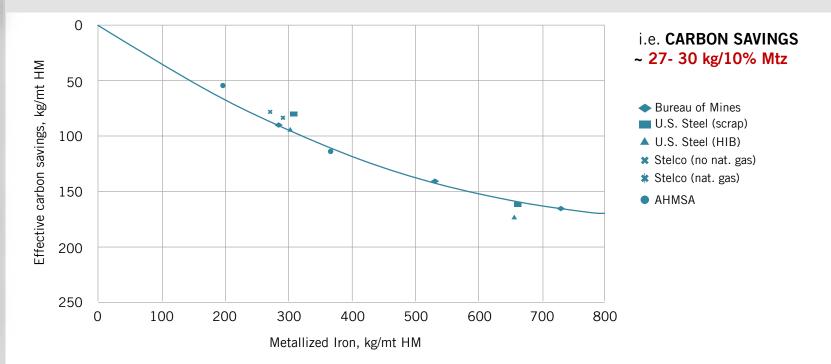
- $2C + O_2 \longrightarrow CO + Heat$
- ~ 8 kWh / t_{LS} saved depending on post-combustion factor

OPTIMUM CARBON CONTENT IN DRI DEPENDS ON EACH SPECIFIC APPLICATION AND STEEL GRADE:

- > ENERGIRON plants are not designed to produce DRI with a specific C content, it can be easily adjusted by setting few operating parameters
- > Feeding DRI with correct C content allows to reduce the residual FeO without graphite injection into EAF, that has lower efficiency
- > Feeding to EAF C in cementite form, provides thermal energy (from Fe₃C dissociation) to the EAF
- > C in DRI reacts with O₂ injected into EAF, providing thermal energy, better stirring, foamy slag
- > Higher C content in DRI provides longer electrode's life
- > Higher C content in DRI provides longer EAF refractory's life
- > Feeding DRI with correct C content allows to reduce the tap-to-tap time, anyhow excessive C content in DRI can cause longer tap-to-tap time (refining time to get rid of C)

+ 4.5%	
3.0 ÷ 4.5 %	CARB
2.0 ÷ 3.0 %	SON C
- 2.0%	
	Z

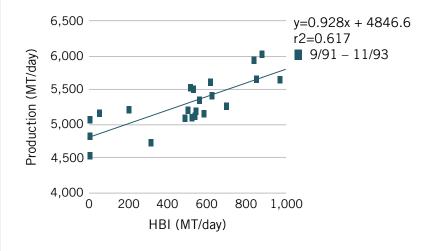
DRI used as P.I. Replacement DRI used in combination with scrap EAF fed by DRI only Special applications



HIGH-C DRI CAN BE FED TO BF:

- 1. TO KEEP SAME LIQUID STEEL PRODUCTION RATE. In this case the main target is reduction of environmental impact due to a decrease of specific coal consumption and CO₂ emissions by lowering PCI consumption
- 2. TO INCREASE HM PRODUCTIVITY IN THE BF, decreasing not only specific consumption figures and CO₂ emissions but also achieving savings in production costs.

EFFECT OF DRI IN THE BF BURDEN ON CARBON SAVINGS Example: Standarized graph as per Flint operating factors Based on Fe°/FeT ~ 32% metallised charge, the expected Carbon rate savings are expected to be 85 – 90 kg;

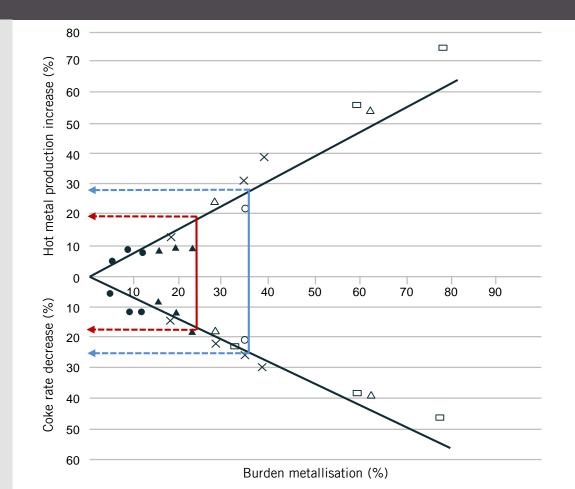

EFFECT OF DRI IN THE BF BURDEN ON PRODUCTIVITY

Hot Metal (HM) production increase; about 6-7% per each 10% of burden metallisation. Based on Fe° / FeT ~ 32% metallised charge, the expected Productivity increase is expected to be 19-23%.

However; the estimate of productivity increase depends on multiple factors; i.e.

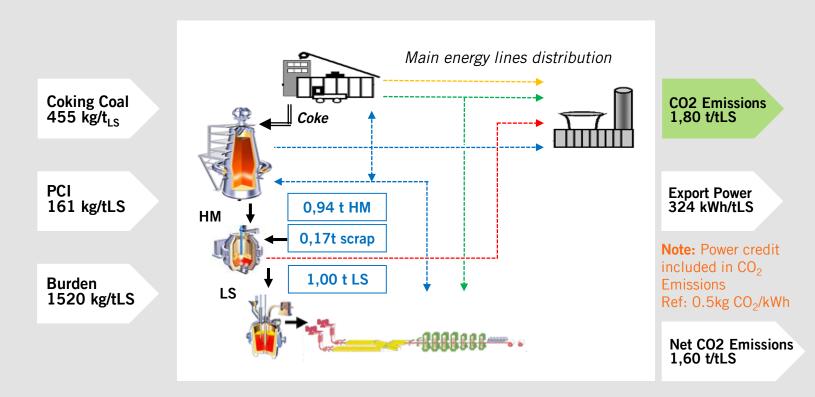
- > Size and quality of raw materials
- > Operating practices
- > Oxygen injection, PCI
- > Permeability
- > Charge distribution

Reference	% Productivity increase 10% Mtz	Comments	
IRSID	6,6	Theoretical calculation	
STELCO	6,5	5,15% NG injection	
AHMSA	7,9	BF operating at low productivit	
USIMINAS	7,9	Tests up to 15% Mtz	
AK Steel has achieved 19% increase for production ~5.500 ton/d with 181 kg HBI/t HM		Optimising operating practices related to oxygen, NG injection, etc	

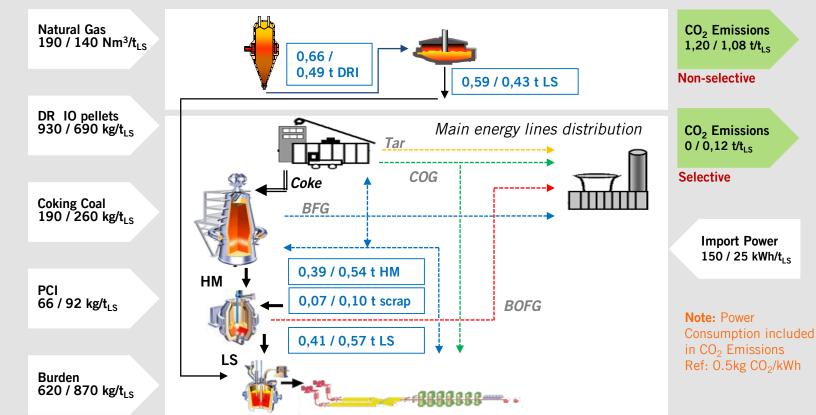

HIGH CARBON DRI: USE in BF/BOF

HYL

Hot Metal (HM) production increase; about 7-8% per each 10% of burden metallisation.


Lower coke rate; about 7% per each 10% of burden metallisation.

(1965)
(1966)
(1964)
(1965)
(1966)
(1978)

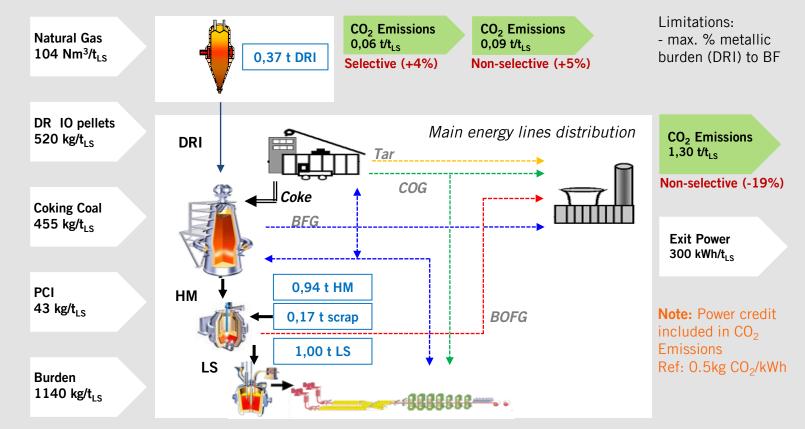


ENERGIRON DRP INTEGRATED WITH BF

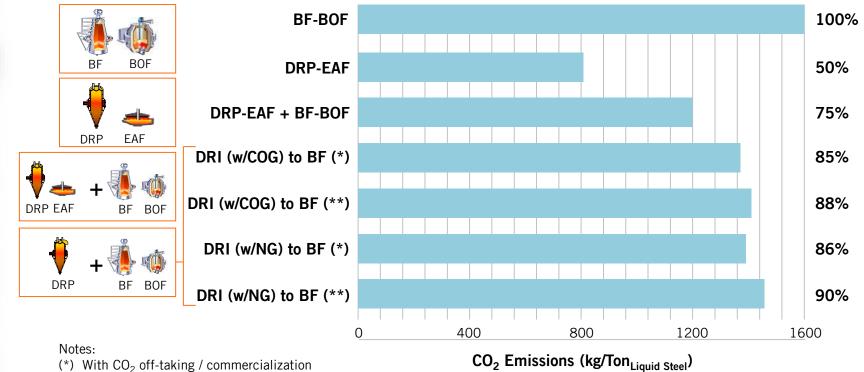
BASE CASE: TYPICAL INTEGRATED MILL BF-BOF

CASE 1: REPLACEMENT OF BF-BOF by DRP-EAF (a) w/o & (b) w CO2 off-taking

ENERGIRON DRP INTEGRATED WITH BF



CASE 2: INTEGRATION OF DRP-EAF IN BF-BOF with CO₂ off-taking



> Total COG availability for DRP $\,>$ max. % metallic burden (DRI) to BF

CASE 3: EXTERNAL DRI TO BF (a) w / (b) w/o CO₂ off-taking

CO₂ EMISSIONS – STEELMAKING ROUTES

(*) With CO₂ off-taking / commercialization

(**) Without CO₂ off-taking / commercialization

The ZR patented scheme for using COG has been tested under the following scenarios:

- > Pilot plant tests; 1978-1982, 1997
- > Campaigns during 1997: With CO₂ absorption and oxygen injection (ZR)
- > Laboratory tests at AHMSA to prove destruction of BTX with hot DRI; 1980's
- > 2008; Tests at Zdz, Poland in a joint effort between ArcelorMittal and Tenova HYL to confirm the above

EFFICIENCY - No need of external combustion chamber or additional reactor

Now in analysis with JSW to implement this scheme in the existing HYL plant in India

PP Test No.	COG (Nm³/t DRI)	OXYGEN (Nm ³ /t DRI)	MTZ (%)	CARBON (%)
1	557	15	93.1	3.2
2	555	20	94.2	2.8
3	570	15	93.8	3.8
4	590	20	94.1	4.1

REFERENCES

REFERENCES

Two modules:

2.0 MTPY each Carbon 1.5% - 2.5% Met 94% - 96% Hot DRI feed to EAF

Start-up 2009/2011

One module:

2.0 MTPY Carbon 3.0% - 4.0% Met 94% - 96% Hot DRI feed to EAF

Start-up 2013

One module:

2.5 MTPY Carbon 3.0% - 4.5% Met 94% - 96.5% Cold DRI

Start-up 2013 One module:

1.95 MTPY Carbon 1.5% - 2.5% Met 94% - 96% Cold DRI

Start-up 2015

UNMATCHED EXPERIENCE IN HIGH CAPACITY MODULES

- > Energiron is the only proven Direct Reduction Technology available on the market with a productivity rate up to 2,5 Mtpy in a single module, able to compete with BF-BOF route
- > Controlled carbon content value in DRI affect positively EAF operation in terms of OPEX, and only Energiron can produce it
- > HyTemp system gives unmatched results in liquid steel productivity and efficiency
- > Energiron has designed and supplied facilities that are successfully operating under some of the strictest environmental standards in the world

Packing Energy and Iron - Feeding power to EAF THE FIRST INDUSTRIAL GAS BASED REDUCTION TECHNOLOGY IN 1957 THE FIRST TO BE READY FOR THE IRONMAKING OF THE FUTURE