Comparing the CO$_2$ Emissions of Different Ironmaking Routes

7th European Coke and Ironmaking Congress – ECIC 2016
Contents

1. Introduction

2. Fundamentals of CO$_2$ Emission Calculations
 • definition of emission scopes according to Greenhouse Gas Protocol
 • emission values for power generation – grid electricity factors
 • CO$_2$ credits for slag and Off Gas utilization

3. Definition of Routes and Borders
 • Blast Furnace, Smelting Reduction, Direct Reduction, Electric Arc Furnace

4. Calculation Results
 • comparison of CO$_2$ emissions of liquid steel production routes – variation of grid electricity factors
 • operator-specific calculation model without consideration of credits or emission factors for grid electricity
Introduction
2015 Paris Agreement

The climate change represents an urgent and potentially irreversible threat to human societies and the planet and thus requires the widest possible cooperation by all countries, and their participation in an effective and appropriate international response, with a view to accelerating the reduction of global greenhouse gas emissions.

Deep reductions in global emissions will be required in order to achieve the ultimate objective of the Convention and emphasizing the need for urgency in addressing climate change.

The conference of the parties notes with concern that the estimated aggregate greenhouse gas emission levels in 2025 and 2030 resulting from the intended nationally determined contributions do not fall within least-cost 2°C scenarios but rather lead to a projected level of 55 gigatonnes in 2030, and also notes that much greater emission reduction efforts will be required than those associated with the intended nationally determined contributions in order to hold the increase in the global average temperature to below 2°C above pre-industrial levels by reducing emissions to 40 gigatonnes or to 1.5°C above pre-industrial levels by reducing to a level to be identified in the special report referred to in paragraph 21 below.

ADOPTION OF THE PARIS AGREEMENT
Diminishing Returns from Efficiency

- Steel industry’s **long-term record of improved efficiency** (reduced emissions) is excellent, matching or surpassing that of other key industrial conversions.

- **Further efficiency gains** are possible but are relatively **limited**, and the greatest reward should come from changes in the use of steel products.

- Global nature of GHG effects requires a **system-wide approach** to solutions and other sectors offer far greater and less expensive reductions.

<table>
<thead>
<tr>
<th>GHG Source</th>
<th>Global CO₂ Share</th>
<th>Potential for reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron and steel industry</td>
<td>8%</td>
<td>< 10%</td>
</tr>
<tr>
<td>Agriculture</td>
<td>14%</td>
<td>> 20%</td>
</tr>
<tr>
<td>Transportation</td>
<td>20%</td>
<td>> 30%</td>
</tr>
<tr>
<td>Electricity generation</td>
<td>30%</td>
<td>> 30%</td>
</tr>
</tbody>
</table>

V. Smil, ICEF Forum 2015

Energy cost of pig iron 1750-2015
Definition of Emission Scopes according to Greenhouse Gas Protocol

Scope 1: All *direct GHG emissions*

Scope 2: *Indirect GHG emissions* from consumption of purchased electricity, heat or steam.

Scope 3: *Other indirect emissions*, such as the extraction and production of purchased materials and fuels, transport-related activities in vehicles not owned or controlled by the reporting entity, electricity-related activities (e.g. T&D losses) not covered in Scope 2, outsourced activities, waste disposal, etc.
Emission Values for Grid Electricity

<table>
<thead>
<tr>
<th>country</th>
<th>kg CO₂ / kWh</th>
<th>country</th>
<th>kg CO₂ / kWh</th>
<th>country</th>
<th>kg CO₂ / kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>0.002</td>
<td>Argentina</td>
<td>0.392</td>
<td>World</td>
<td>0.624</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.023</td>
<td>Italy</td>
<td>0.411</td>
<td>Iran</td>
<td>0.631</td>
</tr>
<tr>
<td>France</td>
<td>0.071</td>
<td>Japan</td>
<td>0.443</td>
<td>Germany</td>
<td>0.672</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.093</td>
<td>OECD Europe</td>
<td>0.452</td>
<td>Indonesia</td>
<td>0.685</td>
</tr>
<tr>
<td>Austria</td>
<td>0.177</td>
<td>South Korea</td>
<td>0.504</td>
<td>China</td>
<td>0.973</td>
</tr>
<tr>
<td>Canada</td>
<td>0.180</td>
<td>United Kingdom</td>
<td>0.509</td>
<td>South Africa</td>
<td>1.069</td>
</tr>
<tr>
<td>Venezuela</td>
<td>0.208</td>
<td>Russia</td>
<td>0.513</td>
<td>Bulgaria</td>
<td>1.166</td>
</tr>
<tr>
<td>Spain</td>
<td>0.343</td>
<td>USA</td>
<td>0.547</td>
<td>India</td>
<td>1.333</td>
</tr>
</tbody>
</table>

For many countries there is a significant difference between the composite electricity/heat factors published by the IEA and electricity-specific factors. It is important to use electricity-specific factors so that the emissions from electricity are not over or under-estimated within corporate GHG accounts.
CO₂ Calculations – Definition of Borders

fair comparison of different ironmaking routes can only be achieved if the same basis is used for all calculations:

- defined inclusion of scope 1, 2 and or 3 in the calculations
- use of accurate emission values for grid electricity
 - Raw materials (ore, coal, additives)
 - Products (liquid steel, top gas)

Image Source:
CO₂ abatement in the iron and steel industry
IEA Clean Coal Center No. 12/1 (2012)
CO₂ Calculations – Definition of Routes

BF, Smelting Reduction:
- Blast Furnace
- COREX®
- FINEX®

Direct Reduction
- COREX® gas based Midrex™ plant
- Finored®
- Midrex™

Electric Steel
- 100% Scrap in EAF
CO₂ Calculations – Results

CO₂ emission factor for grid electricity / calculation model:

- **0.023 kg CO₂/kWh (Sweden)**
 - Scope 1, 2 & 3

- **0.672 kg CO₂/kWh (Germany)**
 - Scope 1, 2 & 3

- **0.973 kg CO₂/kWh (China)**
 - Scope 1, 2 & 3

- **1.333 kg CO₂/kWh (India)**
 - Scope 1, 2 & 3

Power Generation:
- CCPP: h = 45%

Base Cases:
- Scope 1, 2 and 3 included different emission factors for different countries
Smelting reduction processes (blast furnace, COREX® and FINEX®) utilize coke and coal. Carbon is the primary energy source and reductant, leading to CO and CO₂ as the main gas emission.

Production routes based on the use of natural gas (with carbon and hydrogen as reductants) are advantageous compared to production routes based on coal.

The most favourable conditions when it comes to CO₂ emission are achieved by the scrap + EAF route, but this is limited due to the availability of high-quality scrap necessary for high-quality steel (+ less reduction work compared to iron ore as raw material).
CO₂ Calculations – Results

- Strong dependency of the results on the nation-wide specific CO₂ emission value for the generation of electric power.

- Countries with high CO₂ emission values: smelting reduction technologies advantageous (no EAF required)

- Countries with low CO₂ emission values: direct reduction routes with EAF advantageous

- combined Corex®+DR plant
 (utilization of Corex® Export gas for DRI production, low CO₂ emission for electric steelmaking)
 if natural gas is limited

Corex®+Midrex™ combination plants successfully implemented at ArcelorMittal South Africa, Saldanha Steel Works, South Africa and Jindal South West Steel, India
CO₂ Calculations – Results

![Bar chart showing CO₂ emissions for different processes and regions](chart.png)

- **CO₂ emission factor for grid electricity / calculation model:**
 - 0 kg CO₂/kWh, only Scope 1 (BF: including coke, sinter, lime) no credits for off gas or slag
 - 0.023 kg CO₂/kWh (Sweden) Scope 1, 2 & 3
 - 0.672 kg CO₂/kWh (Germany) Scope 1, 2 & 3
 - 0.973 kg CO₂/kWh (China) Scope 1, 2 & 3
 - 1.333 kg CO₂/kWh (India) Scope 1, 2 & 3

- **Power Generation:**
 - CCPP: h = 45%

Virtual cases because no BF or COREX®/FINEX® plant is operated without Off Gas utilization.

- **Operator specific model:**
 - only Scope 1 (BF: including coke, sinter, lime)
 - No credits for off gas or slag
CO\textsubscript{2} Calculations – Results

• Omitting Scope 2 and 3 in the calculations gives results rather similar to those of Sweden (country with low CO\textsubscript{2} emission value for grid electricity)

• In this case of very low CO\textsubscript{2} emissions caused by electricity production, the blast furnace is the most advantageous route in smelting reduction processes (virtual case – no BF or Corex® or Finex® plant is operated without off gas utilization!)

• Direct reduction routes benefit from low CO\textsubscript{2} emission values (but only feasible if natural gas is available at low cost)

• if natural gas is limited: combined Corex®+DR plant excellent alternative to blast furnace for producing steel at low CO\textsubscript{2} emissions
Conclusions

• Depending on the local site conditions and especially the specific CO\textsubscript{2} emission value for the generation of electric power, the COREX® and FINEX® Process offer significant potential for achieving low greenhouse gas emission figures.

• Although the direct reduction + EAF routes benefit most from low emission values, they are only economically feasible if sufficient amounts of low-cost natural gas are available at a reasonable cost.

• If the latter is not the case, the combined COREX®+DR plant is an excellent alternative for producing steel at much lower CO\textsubscript{2} emissions than the blast furnace or other smelting reduction technologies.
Outlook

Calculations have been carried out for different systems under comparable conditions

Alternative process routes in Ironmaking:
 • Usage of HBI in blast furnace
 • H₂ injection
 • COG injection
The information (including, e.g., figures and numbers) provided in this document contains merely general
descriptions or characteristics of performance based on
estimates and assumptions which have not been verified.

It is no representation, does not constitute and/or evidence a
contract or an offer to enter into a contract to any extent and
is not binding upon the parties. Any obligation to provide
and/or demonstrate respective characteristics shall only
exist if expressly agreed in the terms of the contract.

These estimates and assumptions have to be analyzed on a
case-to-case basis and might change as a result of further
product development.

Primetals Technologies excludes any liability whatsoever
under or in connection with any provided information,
estimates and assumptions. The provided information,
estimates and assumptions shall be without prejudice to any
possible future offer and/or contract.

Any use of information provided by Primetals Technologies
to the recipient shall be subject to applicable confidentiality
obligations and for the own convenience of and of the sole
risk of the recipient.
THANK YOU